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Abstract

Stationary bifurcations in several nonlinear models of fluid conveying pipes fixed at both ends are analyzed with the

use of Lyapunov–Schmidt reduction and singularity theory. Influence of the gravitational force, curvature and vertical

elastic support on various properties of bifurcating solutions are investigated. In particular the conditions for

occurrence of supercritical and subcritical bifurcations are presented for the models of Holmes, Thurman and Mote,

and Paidoussis.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The nonlinear dynamics behavior of pipes conveying fluid displays interesting and paradigmatic behavior with

important practical implications, and it offers a rich setting for development and testing of nonlinear dynamics theory.

Bifurcation theory represents one of the main subject areas of nonlinear dynamics, analyzing behavior either in the

vicinity of trivial solutions (local bifurcations), or the existence in-the-large of connected sets of nontrivial solutions

(global bifurcations). In the study of local bifurcations, particularly interesting is the influence of various parameters

figuring in the governing equations on the location and stability of fixed points and on classification of bifurcations as

supercritical or subcritical. In a supercritical bifurcation there is no discontinuous change in size and form of the

attractor, and after the bifurcation the new (enlarged) attractor contains within itself the old attractor. On the other

hand, in a subcritical bifurcation the attractor disappears followed by a jump of the system to a remote and completely

new attractor, via a fast dynamic transient. For the complete understanding of the dynamics, both stationary and

nonstationary (dynamic) aspects of the bifurcation theory are important.

In the case of fluid-conveying pipes, nonstationary analysis is related to the study of supercritical and subcritical

Hopf bifurcations, the determination of the amplitude associated with flutter and the dependence of oscillation

frequency on the amplitude. Stationary analysis, on the other hand, is concerned with stationary bifurcations i.e.

changes in the equilibrium point structure of the underlying equations, which due to reflection symmetry are of pitch-

fork type. Furthermore interplay between stationary and dynamic bifurcations may lead to more complicated dynamics

such as spatio-temporal intermittency and chaos (Argentina and Coullet, 1998). In spite of many publications devoted
e front matter r 2005 Elsevier Ltd. All rights reserved.
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to these subjects, a thorough and systematic analysis of nonlinear models of fluid conveying pipes, particularly of pipes

supported at both ends, and related bifurcations is still lacking. Following the pioneering work by Holmes (1977, 1978)

further work of interest appeared in Ch’ng (1977, 1979) and Lunn (1982). As a paradigm of the studies performed so

far, the work of Holmes based on the center manifold analysis concentrated on a one-equation model which does not

take into account any gravitational nor tensioning effects. The coefficients figuring in the normal form of the obtained

bifurcation equation were given only as numerical values, disguising the influence of involved physical quantities.

Finally, the complete two-equation model of Paı̈doussis (2003) has only recently been introduced in its correct form and

it has never been used. A wealth of up-to-date information related to the published work on nonlinear aspects of fluid-

conveying pipes with supported ends may be found in Paı̈doussis (1998, 2003).

In order to improve upon the current status and in order to prepare the ground for the study of spatio-temporal

intermittency (and chaos), we study several well-known and frequently used nonlinear models in which we focus on

nondegenerate local bifurcations from the trivial solution to another stationary nontrivial solution. In particular, the

object of our analysis are pipes fixed at both ends shown in Fig. 1 and the nonlinear models of Holmes (1977), Thurman

and Mote (1969) and the complete nonlinear model of Paı̈doussis (2003) [the latter being based on the model of Semler

et al. (1994)]. The manner of presentation is such that each model is considered as a special case of the complete

nonlinear model, revealing the influence on the complete dynamics of different linear and nonlinear terms and

quantities. Moreover the increasing complexity of each model leads to a better understanding of the complete nonlinear

model. Each model is presented in a separate section of the paper, with subsections related to certain important

parameters influencing the dynamics, such as the gravitational force or pipe curvature.

Since this exposition relies strongly on the Lyapunov–Schmidt reduction, a brief description of the procedure is

presented in Appendix A. The interested reader may find extensive treatment in books (Golubitsky et al., 1985;

Golubitsky and Schaeffer, 1988). An important characteristic of the Lyapunov–Schmidt reduction is that the procedure

for obtaining normal form of the bifurcation equation is pursued by analytical means, without using any numerical or

truncating procedures. Hence the normal form is exact and the influence of each parameter on the type of bifurcation

may be traced and analyzed. An important insight gained by using this method is reflected in the fact that we obtain

exact analytical solutions in the vicinity of a bifurcation point for each model and derive exact conditions that classify

bifurcations as supercritical or subcritical.
z

x

�

Fig. 1. A pipe with supported ends conveying fluid. The diagram also shows coordinates used in the text; r represents the fluid velocity.
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2. The model of P.J. Holmes

2.1. Bifurcations in the stationary model without gravitational effects

Holmes considered pipes with supported, nonsliding ends and obtained a nonlinear equation of motion by adding to

the linear equation a nonlinear term corresponding to the mean, deformation-induced tensioning. The complete

equation of motion in nondimensional form reads

a_v0000 þ v0000 � ðG� r2 � 1
2Ajv

0j2 þ aAhv0j_v0iÞv00 � gð½1� x�v0Þ0 þ 2
ffiffiffi
b

p
r_v0 þ s_vþ €v ¼ 0, (1)

where v ¼ vðx; tÞ denotes the lateral deflection normalized by the length of the pipe. In addition, G represents the tensile

force on the pipe, b represents the mass ratio, r the flow velocity, A the axial stiffness, a is related to the viscoelastic

structural damping, s represents fluid damping, and g denotes gravitational effects. Explicitly,

a ¼
EI

M þm

� �1=2
a

L2
; b ¼

M

M þm
; g ¼

M þm

EI
L3g, (2)

where a is the coefficient of Kelvin–Voigt damping in the pipe material, M and m are the mass of fluid and pipe per unit

length, respectively, and L is the length of the pipe, while

G ¼
T0L2

EI
; A ¼

EAL2

EI
; s ¼

cL2

½EIðM þmÞ�1=2
. (3)

In the above equations T0, EI ;L;A; I ;E and c are the longitudinal externally applied tension, flexural rigidity of the

pipe, length of the pipe, cross-sectional area, area-moment of inertia, modulus of elasticity and constant of damping

(due to friction), respectively. Moreover v0 ¼ dv=dx, _v ¼ dv=dt. With x ¼ s=L, jvj denotes the L2 norm

jv0j ¼

Z 1

0

v02ðxÞdx
� �1=2

, (4)

while the hv0j_v0i denotes the L2 inner product

hv0j_v0i ¼

Z 1

0

v0ðxÞ_v0ðxÞdx. (5)

The boundary conditions are v ¼ v00 ¼ 0 at x ¼ 0; 1. The corresponding stationary equation, neglecting gravitational

effects, applied tension and nonlinear dissipative term following a Lyapunov–Schmidt reduction, locally may be put

into one-to-one correspondence with solutions of the single algebraic equation

gðm; rÞ ¼ 3
4ðnpÞ

4A
� �

m3 � ðnpÞ3mrþ Wð3Þ ¼ 0, (6)

indicating that the corresponding bifurcation is always a supercritical pitch-fork one, since

3
4
ðnpÞ4A40.

Using a two-mode Galerkin discretization applied to the complete equation (1) and assuming s ¼ g ¼ G ¼ 0, Holmes

(1977) obtained numerical values for terms multiplying Am3 and mr, respectively, in the normal form equation (6). We

have shown here that the sign of these terms is unalterable and we have presented their analytical form. Applying the

Lyapunov–Schmidt reduction to the same stationary equation and taking applied tension into account, the following

normal form of the bifurcation equation is obtained:

gðm; rÞ ¼
3

4
npþ

G
2np

� �4

A 1�

sin
G
np

� �

4 npþ
G
2np

� �2

2
6664

3
7775m3 � ðnpÞ3mrþ Wð3Þ ¼ 0. (7)

In this case too, the type of pitchfork bifurcation is supercritical and may not be altered, irrespective of the value of

tension G or axial flexibility A.

Since the influence of gravitational effects was not considered in the original treatment (Holmes, 1977, 1978), nor in

subsequent studies, we analyze this effect along with the effect of tensioning in the next section, again restricting

analysis to the stationary version of Eq. (1).
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M. Nikolić, M. Rajković / Journal of Fluids and Structures 22 (2006) 173–195176
2.2. The role of gravitational effects

The stationary equation representing nonlinear dynamic behavior of a pipe conveying fluid including gravitational

and tensioning effects may be written in the form:

v0000 � r2 � G� 1
2
Ajv0j2

� �
v00 � gð½1� x�v0Þ0 ¼ 0, (8)

where v, as in (1) denotes the displacement in the z-direction. The boundary conditions are v ¼ v00 ¼ 0 at x ¼ 0 and

x ¼ 1. Introducing the variable a2 ¼ r2 � ðGþ gÞ, integrating once and setting dv=dx ¼ u we obtain the equation

u00 þ ða2 þ gxÞu� 1
2
Aju0j2 ¼ 0, (9)

with boundary conditions u0ðx ¼ 0Þ ¼ u0ðx ¼ 1Þ ¼ 0. The one-dimensional kernel of the corresponding linear operator

L:¼u00ða2 þ gxÞu,

is now spanned not by a sine function, as in the case without gravitational effects, but by Bessel functions. The proof of

this proposition requires transformation of the equation

u00 þ ða2 þ gxÞu ¼ 0, (10)

to the equation

t2w00 þ tw0 þ ðt2 � ð1
3
Þ
2
Þw ¼ 0, (11)

where in the above equation the prime denotes differentiation with respect to t. First, substitution ða2 þ gxÞgs ¼ y,

s ¼ �2
3
, leads to the equation

u00 þ yu ¼ 0,

where the prime denotes differentiation with respect to y. The subsequent substitution t ¼ 2
3

y3=2, u ¼
ffiffiffi
y
p

w leads to

Eq. (11). This equation may be solved in terms of Bessel functions so that the corresponding solution of the linearized

equation (8) is

vðxÞ ¼ ða2 þ gxÞ J2=3
2

3

a3

g

� �
J�2=3

2

3

ða2 þ gxÞ3=2

g

 !
� J�2=3

2

3

a3

g

� �
J2=3

2

3

ða2 þ gxÞ3=2

g

 !" #
. (12)

For gravity and fluid motion in the same direction, and assuming G ¼ 0, the location of bifurcation points (nontrivial

equilibria) is obtained from the expression

rn ¼ npþ
1

4

g
np
þ Wðg2Þ; n ¼ 0; 1; 2; . . . . (13)

Details of the derivation of Eqs. (10) and (13) are presented in Appendix B. The above expression suggests that

bifurcation points are shifted as compared to the case without gravity in the direction of increasing velocity by the

amount g=4np. Correspondingly, bifurcations occur for higher velocities compared to the case when gravity is not taken

into account. As the velocity increases, the effects of gravity are weaker, so that finally locations of bifurcation points

are the same as for the case without gravity. This is an intuitively pleasing result as one expects high enough velocity to

annul the effects of gravity. If G is not neglected, the expression for the critical velocity is

rn ¼ npþ
1

4

g
np
þ
1

2

G
np
þ Wð2Þ,

¼ npþ
1

4

gþ 2G
np
þ Wð2Þ; n ¼ 1; 2; . . . ð14Þ

The resulting bifurcation diagrams are presented in Fig. 2. Hence the roles of tensioning and gravity are similar;

however, as the velocity increases, the influence of gravity diminishes twice as fast as tensioning effects. The other aspect

of this phenomenon may be observed by considering the distance between bifurcation points, in units of velocity, given

by the following expression:

Drn ¼ p�
1

4p
g

nðnþ 1Þ
�

1

2p
G

nðnþ 1Þ
. (15)

When g ¼ G ¼ 0, bifurcation points are equidistant from each other, this distance being equal to p. When g and G are

not equal to zero, the distance is an increasing sequence, whose limit ðn!1Þ is equal to p.
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If the direction of the fluid is opposite to the direction of gravity and assuming no tensioning effects, bifurcation

points are located at

rn ¼ np�
1

4

g
np
þ Wðg2Þ; n ¼ 0; 1; 2; . . . . (16)

In this case, bifurcations occur for velocities smaller than in the case without gravity, and again for high enough

velocities the effects of gravity on the location of bifurcation points are annulled. Inclusion of tensioning effects yields

rn ¼ np�
1

4

g
np
þ

1

2

G
np
þ Wð2Þ ¼ np�

1

4

g� 2G
np
þ Wð2Þ; n ¼ 1; 2; . . . ,
g
(x

,�
)

� 2� 3� �

� = 0
Γ = 0

Fig. 2. Supercritical pitchfork bifurcation for the model of Holmes with and without gravity and tensioning effects. Fluid row is in the

same direction as gravity.

g
(x

,�
)

� 2� 3� �

� = 0
Γ = 0

Fig. 3. Supercritical pitchfork bifurcation for the model of Holmes. Fluid flow is in the direction opposite to the direction of gravity.
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and the corresponding bifurcation diagrams are presented in Fig. 3. The matching bifurcation interpoint distances are

Drn ¼ pþ
1

4

g
nðnþ 1Þ

�
1

2p
G

nðnþ 1Þ
.

In this case, there is a competition between gravity and tensioning effects, with the possibility that they annul each other

when g ¼ 2G.
Eq. (11) yields an approximate solution

vðxÞ ’
1

ða2 þ gxÞ2
sin

2

3

ða2 þ gxÞ3=2 � a3

g

" #
, (17)

which for g! 0 approaches the solution sinðnpxÞ, the solution of the linear equation corresponding to (8) without

gravitational effects. In order to shed more light on the physical aspect of the above results, it is instructive to call upon

an important relationship between the solution mðrÞ of the algebraic equation gðm; rÞ ¼ 0 and the solution of the full

problem vðxÞ. Near the bifurcation point, the nontrivial solutions of (8) have the spatial structure of the basis vector u1
that spans the one-dimensional kernel of the corresponding linear operator. Hence, the solutions m of the reduced

bifurcation equation gðm; rÞ ¼ 0 are related to solutions of Eq. (8) as

v ¼ mu1 þ Wðm2Þ,

so that the complete solution of (8) in the vicinity of the bifurcation point may be written as

vðxÞ ¼ mðrÞða2 þ gxÞ J2=3
2

3

a3

g

� �
J�2=3

2

3

ða2 þ gxÞ3=2

g

 !
� J�2=3

2

3

a3

g

� �
J2=3

2

3

ða2 þ gxÞ3=2

g

 !
þ Wðx2Þ

" #
, (18)

satisfying boundary conditions vð0Þ ¼ vð1Þ ¼ 0; v00ð0Þ ¼ v00ð1Þ ¼ 0.

The analysis of the Holmes model reveals several important features. Irrespective of the inclusion or exclusion of

gravity and/or tensioning effects, the stationary bifurcation is of supercritical type. Although gravity and tension have a

similar effect on the location of bifurcation points, only gravity changes the solution locally. In the vicinity of the

bifurcation point, the solution (eigenfunction) is a sine function for g ¼ 0 and a Bessel function for ga0. Moreover,

both gravity and tension increase the distance between bifurcation points along the parameter space and this effect is

particularly notable for low velocities, while high velocities compensate the influence of gravity and tension as

intuitively expected.
3. The model of Thurman and Mote

3.1. Bifurcations in the stationary model

This model (Thurman and Mote, 1969; Paı̈doussis, 1998), which considers both lateral and axial deflections, was

derived under the following assumptions: (i) no gravity force, (ii) steady flow velocity, (iii) linear moment–curvature

relationship, and (iv) a simple approximation of the fluid velocity. For the study of the normal form of the bifurcation

equations it is more instructive to consider this model as a special case of the complete nonlinear model of Paı̈doussis

(2003),1 to be analyzed in the next section. The nondimensional equations for spatial motion of the complete nonlinear

model are

w0000 þ ðr2 � ðG�PÞÞw00 þ gw0 þ ðG�A�PÞðw00u0 þ u0w00 þ 3
2

w02w00Þ

� ð3u000w00 þ 4u00w000 þ 2u0w0000 þ w0u0000 þ 2w003 þ 2w02w0000 þ 8w0w00w000Þ

� g½w0u0 þ 1
2 w03 � ð1� xÞð�w00 þ u00w0 þ u0w00 þ 3

3 w02w00Þ� ¼ 0, ð19Þ

ðr2 �AÞu00 � ðw00w000 þ w0w0000Þ � g½1
2

w02 � ð1� xÞw0w00� þ ðG�A�PÞw0w00 ¼ 0, (20)

where the dimensionless tension and the pressure at the downstream end are

G ¼
TðLÞL2

EI
; P ¼

PðLÞL2

EI
, (21)
1The corrected version of equations is given in Appendix T.4.
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respectively, while u denotes the dimensionless longitudinal deflection in the x direction (direction of gravity), and the

other quantities being the same as in the model of Holmes, with w here replacing v. A prime denotes differentiation with

respect to the Lagrangian variable x which may be used interchangeably with x. The following assumptions may be

attributed to the model of Thurman and Mote:

g ¼ 0; P ¼ 0; G ¼
T0L2

EI
; k2 ¼ 0,

where T0 ¼ const:, denotes externally applied tension and k2 denotes curvature.

Consequently the equations of motion of this model are

w0000 þ ðr2 � GÞw00 þ ðG�AÞ w00u0 þ u0w00 þ 3
2

w02w00
� �

¼ 0; ðr2 �AÞu00 þ ðG�AÞw0w00 ¼ 0. (22)

The boundary conditions are uð0Þ ¼ wð0Þ ¼ uðx ¼ 1Þ ¼ wðx ¼ 1Þ ¼ 0, with the additional condition w00ð0Þ ¼ w00ðx ¼
1Þ ¼ 0 for a simply supported pipe or w0ð0Þ ¼ w0ðx ¼ 1Þ ¼ 0 for a clamped–clamped one.

Fixed points, as in the model of Holmes for g ¼ 0, are located at positions

rn ¼ npþ
1

2

G
np
þ WðG2Þ; n ¼ 0; 1; 2; . . . .

as easily seen from the following argument. The kernel of the linear operator L corresponding to the system consisting

of Eqs. (19) and (20) is obtained by solving the equation

L
w

u

� �
¼

w00000 þ ðr
2 � GÞw000

u000

 !
¼

0

0

� �
, (23)

where

w0ðxÞ

u0ðxÞ

 !
¼
X1
n¼1

an

bn

 !
sin npx, (24)

satisfying boundary conditions

w0ð0Þ

u0ð0Þ

 !
¼

w0ð1Þ

u0ð1Þ

 !
¼

0

0

� �
.

Hence, the position of bifurcation points is readily obtained from Eqs. (23) and (24). A straightforward calculation

indicates that the kernel of L is spanned by

KerL

w

; r

u

0
B@

1
CA

0
B@

1
CA ¼ R

1

0

� �
sin npx

� 	
. (25)

Calculation of terms defined in Appendix A, leads to the following bifurcation equation

gðm; rÞ ¼ 3
8
ðnpÞ4½aðb� 3Þ�m3 � ðnpÞ3mrþ Wðx3Þ ¼ 0, (26)

where

a ¼ G�A; b ¼
G�A

r2 �A
.

In the vicinity of the bifurcating solutions, the solutions of the complete model have the form

wðxÞ

uðxÞ

 !
¼ mðrÞ

1

0

� �
sin kpxþ Wðm2Þ, (27)

where mðrÞ represents the solution of Eq. (26). Hence, again the bifurcation is of the pitchfork type; however, there are

important differences between the model of Holmes and the model of Thurman and Mote. It is immediately evident

that the bifurcation may be of supercritical pitchfork type for

aðb� 3Þ40,
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Fig. 4. Subcritical pitchfork bifurcation for the model of Thurman and Mote.
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and of subcritical type, shown in Fig. 4, for

aðb� 3Þo0.

Writing explicitly the expression on the left side of these inequalities as

ðG�AÞ2

r2n �A
� 3ðG�AÞ,

and recalling that r2n ¼ Gþ ðnpÞ2, implies that two cases may be analyzed, depending on whether jaj=r2no1 or

r2n=jajo1. However, since only the first point of instability corresponding to n ¼ 1 is relevant from the physical point of

view, the former condition is of no practical importance although it is important for understanding the mathematical

aspects of the model.

Case 1: jaj=r2no1. This situation corresponds to high fluid velocities (large n). In this case, a straightforward

calculation yields the following conditions for the occurrence of supercritical and subcritical bifurcations:

Supercritical condition:

GoA. (28)

Subcritical condition:

G4A. (29)

Based on (3) the above inequalities may be also expressed as

T0oEA,

and

T04EA.

Case 2: r2n=jajo1. This case is applicable to low fluid velocities (small n) and large jG�Aj, so that either a highly

flexible pipe is considered or the effects of tensioning are large. Conditions for the occurrence of supercritical and

subcritical bifurcations are

Supercritical case:

GoA� 1
2
ðnpÞ2. (30)

Subcritical case:

G4A� 1
2
ðnpÞ2. (31)

For low fluid velocities, both conditions strongly depend on values of G and A, since n is small, so that supercritical

bifurcation is more likely in a pipe of high axial flexibility and low externally applied tension while subcritical

bifurcation is more likely in a pipe with small axial flexibility and high externally applied tension.

Hence, an important feature of the Thurman and Mote model is dependence of the bifurcation type (supercritical or

subcritical) on the relationship between elastic characteristics of the pipe and externally applied tension, with the
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M. Nikolić, M. Rajković / Journal of Fluids and Structures 22 (2006) 173–195 181
velocity-dependent term figuring only in inequalities relevant at low fluid velocities (the case of physical validity). At this

point it should be mentioned that if r2 does not appear2 in the equation for u, only one classification condition is

obtained in the form of inequalities (28) and (29); thus, from the point of view of the bifurcation theory, this version of

the model assumes high fluid velocities. On the other hand, since the case of high fluid velocities requires large n and is

therefore of no practical importance, the term r2 is necessary for the model to be useful in bifurcation analysis.

Comparison with the model of Holmes, which assumes just lateral deflections and for which only super-critical

bifurcation is possible, reveals that inclusion of the equation for axial deflections makes subcritical bifurcation also

possible.
3.2. Thurman and Mote model with curvature

The inclusion of the curvature term EIk2 in the model of Thurman and Mote may again be considered as a special,

reduced version of the complete nonlinear model. Retaining simplifications of the Thurman and Mote model in effect,

namely g ¼ 0, P ¼ 0, G ¼ T0L2=EI , k2 ¼ 0, T0 ¼ const., but keeping terms that arise from the curvature effect, the

following dimensionless equations of motion are obtained:

w0000 þ ðr2 � GÞw00 þ ðG�AÞðw00u0 þ u0w00 þ 3
2

w02w00Þ

� ð3u000w00 þ 4u00w000 þ 2u0w0000 þ w0u0000 þ 2w003 þ 2w02w0000 þ 8w0w00w000Þ ¼ 0, ð32Þ

ðr2 �AÞu00 � ðw00w000 þ w0w0000Þ þ ðG�AÞw0w00 ¼ 0. (33)

Boundary conditions are the same as in the basic Thurman and Mote model. Arguments used in previously discussed

models lead, as expected, to the same locations of fixed points:

rn ¼ npþ
1

2

G
np
þ WðG2Þ; n ¼ 0; 1; 2; . . . .

Evaluation of terms of the bifurcation equation shows that it has the following form:

gðx; rÞ ¼ 3
4
ðnpÞ4½ð7� bÞðnpÞ2 � 1

2
aðbþ 3Þ�x3 � ðnpÞ3xr, (34)

where

a ¼ G�A; b ¼
G�Aþ 2ðnpÞ2

r2n �A
¼ 1þ

ðnpÞ2

aþ ðnpÞ2
.

Hence, the bifurcation is of supercritical type if

ð7� bÞðnpÞ2 � 1
2
aðbþ 3Þ40,

and subcritical if

ð7� bÞðnpÞ2 � 1
2
aðbþ 3Þo0.

More insight into these inequalities is gained by considering specific cases dependent on the fluid velocity.

Case 1: ja=r2njo1. This case corresponds to high fluid velocities (large n). A straightforward calculation leads to

conditions for the occurrence of supercritical and subcritical bifurcations:

Supercritical condition:

GoAþ 10
3
ðnpÞ2. (35)

Subcritical condition:

G4Aþ 10
3
ðnpÞ2. (36)

A very large and hence a nonphysical value of n would be required to make the term ðnpÞ2 dominant in the above

inequalities. Since with increasing fluid velocity r the effective stiffness of the pipe diminishes, the model strongly prefers

supercritical bifurcation. However, since only the first mode is relevant from the physical aspect, the interest is in the

case below.
2Eq. (5.62) of Paı̈doussis (1998).
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Case 2: jðnpÞ2=ajo1. This case may be attributed to low fluid velocities (small n), and is therefore of physical and

practical interest. The corresponding conditions are:

Supercritical condition:

GoAþ 7
4
ðnpÞ2. (37)

Subcritical condition:

G4Aþ 7
4
ðnpÞ2. (38)

The inclusion of the curvature term in the model increases the effective axial flexibility (the term Aþ 7
4
ðnpÞ2Þ as

compared to the basic Thurman and Mote model (the term A� 1
2
ðnpÞ2Þ, so a slight preference is given to the

supercritical bifurcation. Taking into consideration that n is small, tensioning effects may be dominant, for example in

the case of short pipes with high flexural rigidity.

3.3. The effect of elastic support

In order to investigate the essential features of the added elastic support which involves distributed springs along the

length of the pipe, we use the least complex model, the model of Thurman and Mote model without gravity effects. The

corresponding equations are

w0000 þ ðr2 � GÞw00 þ ðG�AÞðw00u0 þ u0w00 þ 3
2

w02w00Þ þ Kw ¼ 0, (39)

ðr2 �AÞu00 þ ðG�AÞw0w00 ¼ 0. (40)

The algebraic bifurcation equation is identical to Eq. (26), hence elastic support does not change the form of the

solution in the vicinity of bifurcation points. From the equation for the kernel of the corresponding linear operator,

L
w

u

� �
¼

w0000 þ ðr2 � GÞw00 þ Kw

u00

 !
¼

0

0

� �
,

and Eq. (24), the relation determining position of bifurcation points is obtained:

rn ¼ ðnpÞ 1þ
G

ðnpÞ2
þ

K

ðnpÞ4

� �1=2
¼ npþ

1

2

G
ðnpÞ
þ

1

2

K

ðnpÞ3
þ Wð2Þ; n ¼ 0; 1; 2; . . . . (41)

Clearly if the spring constant is small, then the nontrivial bifurcation points are located at same positions rn as in the

Thurman and Mote model. The effect of elastic support is important for very small n (e.g. n ¼ 1 or n ¼ 2) and large

values of K . However, if K is large, and ð1=2ÞG=np small in comparison with ðnpÞ, their locations may be distributed as

in Fig. 5. A brief analysis of the above expression shows that the first nontrivial bifurcation point and some of the

subsequent ones (usually for the first few n’s ) are to a large degree determined by the value of K, and the same applies

to the distances between the bifurcation points. Afterwards, the term ðnpÞ dominates and the bifurcation points are

equally distributed. A complete nonlinear model consisting of Eqs. (19) and (20) and including the term corresponding

to the elastic support is very interesting, both from mathematical and physical aspects; however, due to its complexity it

will be analyzed elsewhere (Rajković and Nikolić, 2005).
4. The complete nonlinear model of Paı̈doussis

4.1. Symmetry considerations

The derivation of the complete nonlinear model, based on the work (Semler et al., 1994), in its correct form is given in

Paı̈doussis (2003). This model, as presented in Section 2, in contrast to the previously analyzed models, includes the

effects of gravity and pressure at the downstream end, so the dimensionless equations of motion of an extensible

cylinder conveying fluid have the form:

w0000 þ ðr2 � ðG�PÞÞw00 þ gw0 þ ðG�A�PÞðw00u0 þ u0w00 þ 3
2
w02w00Þ

� ð3u000w00Þ þ 4u00w000 þ 2u0w0000 þ w0u0000 þ 2w003 þ 2w02w0000 þ 8w0w00w000Þ

� g w0u0 þ 1
2
w03 � ð1� xÞ �w00 þ u00w0 þ u0w00 þ 3

2
w02w00

� �
 �
¼ 0, ð42Þ
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Fig. 5. Supercritical bifurcation for the fluid conveying pipe with and without elastic support. Dashed lines correspond to the case

without elastic support. The case with elastic support assumes Kb0, and ð1=2ÞG=np5np. The first three modes are shown.
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ðr2 �AÞu00 � ðw00w000 þ w0w0000Þ � g 1
2
w
02 � ð1� xÞw0w00


 �
þ ðG�A�PÞw0w00 ¼ 0. (43)

The relevant quantities have been defined in the previous section.

To begin with, it is of interest to inspect the symmetry properties of this equation. It is immediately clear that in the

first equation, only odd powers of w turn up, while this is not the case with the second equation. Hence, solution of the

set (42) and (43), v ¼ ðw uÞT, satisfies the following symmetry condition:

T
wðxÞ

uðxÞ

 !
¼
�wðxÞ

uðxÞ

 !
, (44)

where T represents the operator of the symmetry group. In the vicinity of bifurcating solutions, the solutions of the

complete model have the form

wðxÞ

uðxÞ

 !
¼ mðrÞ

w0ðxÞ

0

� �
þ Wðm2Þ, (45)

where w0ðxÞ represents the solution of the linear equation

w0000 þ ½ðr2 � ðG�PÞÞ � gð1� xÞ�w00 þ gw0 ¼ 0. (46)

Acting with the symmetry operator T on Eq. (45) one obtains

T
wðxÞ

uðxÞ

 !
¼ mðrÞ

�w0ðxÞ

0

 !
þ Wðm2Þ

¼ mðrÞ
w0ðxÞ

0

 !
þ Wðm2Þ.

Hence, the bifurcation equation satisfies the relationship

gð�m; rÞ ¼ �gðm; rÞ,

so that g possesses the Z2 symmetry. The above symmetry properties indicate that the bifurcation is necessarily of the

pitchfork type (Golubitsky, 1985). The physical representation of this symmetry is a reflection across the longitudinal

pipe axis. The use of only one equation in the model of Holmes, the one involving w, may be justified based on these

symmetry considerations.
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4.2. Critical velocity

With the fluid velocity as the bifurcation parameter, the procedure for obtaining critical velocity values

corresponding to bifurcation points is almost the same as in the model of Holmes. Specifically, Eq. (46),

w0000 þ ½ðr2 � GþPÞ � gð1� xÞ�w00 þ gw0 ¼ w0000 þ ðr2 � GþPÞw00 � g
d

dx
½ð1� xÞw0� ¼ 0, (47)

corresponds to the linearized version of Eq. (8) of the Holmes’ model. The only difference is the inclusion of the

pressure term. The analogous equation to Eq. (B.8) in Appendix B determining bifurcation points is

2

3

ðz2 þ gÞ3=2 � z3

g
¼ np,

where

z2 ¼ r2 � ðG�PÞ � g. (48)

Taylor expanding and retaining terms to second order yields the following expression for the critical velocity values

(bifurcation points):

rnðLÞ ¼ npþ
1

4

g
np
þ

1

2

ðG�PÞ
np

þ Wð2Þ

¼ npþ
1

4

gþ 2ðG�PÞ
np

þ Wð2Þ; n ¼ 1; 2; . . . . ð49Þ

An important feature of the critical velocity rn, in contrast to previously considered less complex models, is its

dependence on the pipe length through the length dependence of G and P. This dependence clearly diminishes with

increasing velocity. Expression (49) is obtained assuming that fluid flow is in the direction of gravity (g40). Bifurcations

occur for velocity values higher than in the case when gravity, pressure and tension are not taken into account, under

the assumption that

gþ 2G42P. (50)

The influence of gravity and tension is diminished by the pressure at the downstream end, as intuitively expected. The

individual effect of the gravity term becomes dominant if the pressure value approaches the value of tension. If the flow

is in the direction opposite to the direction of gravity (go0), the expression for bifurcation points is

rnðLÞ ¼ np�
1

4

g
np
þ
1

2

ðg�PÞ
np

þ Wð2Þ

¼ np�
1

4

g� 2ðG�PÞ
np

þ Wð2Þ; n ¼ 1; 2; . . . . ð51Þ

Clearly, gravity in this case acts in the same direction as pressure, and together they oppose the effects of tension.

Additional insight into the position of bifurcation points, in units of velocity, may be obtained by considering

expressions for interpoint distances. For g40 the interpoint distance is

DrnðLÞ ¼ p�
1

4p
g

nðnþ 1Þ
�

1

2p
G�P

nðnþ 1Þ

¼ p�
1

4pnðnþ 1Þ
½g� 2ðG�PÞ�. ð52Þ

As evident from the above expression, at low fluid velocities this distance is a sequence of increasing values provided

that

g ¼ 2P42G,

and a sequence of decreasing values for

gþ 2Po2G.

Since g is length-dependent [Eq. (2)], the former condition is more easily satisfied for long pipes, while the latter is more

likely fulfilled for short pipes. For large n (high velocities), the distance between bifurcation points has a fixed value of p.
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For go0, expression (52) becomes

DrnðLÞ ¼ pþ
1

4p
g

nðnþ 1Þ
�

1

2p
G�P

nðnþ 1Þ

¼ pþ
1

4pnðnþ 1Þ
½g� 2ðG�PÞ�.

In this case, the distances between the bifurcation points form a decreasing sequence if

gþ 2P42G,

and an increasing sequence provided that

gþ 2Po2G.

Recalling that go0, the first condition is more likely in short pipes while the second one is more probable in long pipes.
4.3. Normal form of the bifurcation equation

The normal form of the pitchfork bifurcation modulo higher order terms (h.o.t.), reads

gðm; rÞ ¼ gmmmm
3 þ gmrmrþ h.o.t. (53)

In Appendix B, terms gmmm and gmr are defined with the symbol x replacing m. In previously considered models the term

gmr was explicitly determined and in all cases it was negative. Hence, the sign of gmmm determines whether the bifurcation

is of supercritical or subcritical type. For the complete nonlinear model, the evaluation of terms gmmm and gmr is much

more complicated, and in order to minimize computational effort it is sufficient to determine just the sign of gmr.

Following evaluation of the expression for gmr given in Appendix A, the following relationship is obtained:

gmr ¼ hv
�
0;Lr � v0i ¼ 2rhv�0; v

00
0i, (54)

where L is the linear operator corresponding to the set of Eqs. (42) and (43)

L ¼
w00000 þ ½ðr

2 � ðG�PÞÞ � gð1� xÞ�w000 þ gw00
u000

 !
. (55)

v0 represents the solution of L ¼ 0 evaluated using the procedure presented in Appendix B. With z given by expression

(48), v0 has the following form:

v0 ¼
w0ðxÞ

u0ðxÞ

 !

¼
1

0

 !
ðz2 þ gxÞ J2=3

2

3

z3

g

� �
J�2=3

2

3

ðz2 þ gxÞ3=2

g

 !
� J�2=3

2

3

z3

g

� �
J2=3

2

3

ðz2 þ gxÞ3=2

g

 !" #
, ð56Þ

satisfying boundary conditions

v0ð0Þ ¼ v0ð1Þ ¼ 0.

Explicit expression of the inner product in (54) yields

gmr ¼ 2r
Z 1

0

v0v000 dx.

Performing integration by parts and using boundary conditions, one obtains

gmr ¼ 2r½ðv0v00Þj
1
0 �

Z 1

0

v20 dx ¼ �2r
Z 1

0

v20 dx.

Since the velocity r40 andZ 1

0

v20 dx40,
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it follows that

gmr ¼ �2r
Z 1

0

v20 dxo0. (57)

Hence, once the sign of gmr is known, an explicit evaluation of this term is unnecessary. However, an explicit evaluation

of the term gmmm is essential in order to obtain conditions determining the bifurcation type.

Details related to the evaluation of gmmm, due to its mathematical complexity and extensiveness, are presented in

Appendix C. Only results relevant for the final form of the expression determining the sign of gmmm are presented in this

section. Following appropriate calculations, gmmm assumes the following form:

gmmm ¼ � LðzÞ
ðG�A�Pþ gÞ

r2n �A

2

3

z3

g

� �
þ DðzÞ

1

r2n �A

2

3g

� �1=3

zþ OðzÞ

" #
. (58)

Terms LðzÞ;DðzÞ and OðzÞ are polynomial functions of z and their explicit representation may be found in Appendix C.

As in previous, less complicated models, two cases may be considered.

Case 1: g=z2o1. In the high velocity limit r2n �A40, so that the dominant part of (58) determining the sign of gmmm is

�2LðzÞðG�A�Pþ gÞ. (59)

Hence, the bifurcation is supercritical or subcritical if the above expression is greater or less than zero, respectively. In

order to be precise, it is informative to consider expression LðzÞ. Explicitly, this expression is

LðzÞ ¼ a
2

3
g

� �2

J�2=3
2

3

z3

g

� �� �3

J2=3
2

3

z3

g

� �
þ b

2

3
g

� �8=3

J�2=3
2

3

z3

g

� �� �4
" #

, (60)

where a and b are the positive constants:

a ¼
1

G 2
3

� �� �2 1

G 1
3

� �þ 1

G 1
3

� �
 !2

,

b ¼ a
1

G 1
3

� �þ 1

G 1
3

� �
 !�1

,

and Gð:Þ is the gamma function. The sign of LðzÞ is also positive as

b
2

3
g

� �8=3

J�2=3
2

3

z3

g

� �� �4

4a
2

3
g

� �2

J�2=3
2

3

z3

g

� �� �3

J2=3
2

3

z3

g

� �
,

irrespective of the possible negative signs of either J2=3 or J�2=3. Therefore, conditions for supercritical and subcritical

bifurcations are determined by the term �ðG�A�Pþ gÞ, so that conditions are:

Supercritical condition:

Gþ goAþP, (61)

Subcritical condition:

Gþ g4AþP. (62)

Recalling expressions for dimensionless system parameters (2), (3) and (21), inequalities (61) and (62) may be also

expressed as

TðLÞ þ ðM þmÞgLoEAþ PðLÞ, (63)

and

TðLÞ þ ðM þmÞgL4EAþ PðLÞ. (64)

revealing their dependence on the length of the pipe. Physically, the effects of gravity are related to the length of the pipe

[Eq. (2)], so larger g may be associated with a longer pipe, and smaller g with a shorter one. For short metal pipes, g is
rather small and its effects in inequalities (61) and (62) are weak. A comparison with corresponding inequalities

for the Thurman and Mote model which includes curvature effects, shows that the pressure term replaces the
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velocity-dependent term. The reason is that the pressure term acts similarly as the velocity term, and it is clear that an

adequately high level of pressurization alone may cause supercritical bifurcation. For pipes made of elastic material,

gravity effects are important, as are the effects of axial flexibility, so that a supercritical bifurcation is more probable in

shorter pipes. Intuitively, short pipes acquire a buckled shape in an evolutionary manner (corresponding to the

supercritical case), while longer pipes suddenly deform (corresponding to the subcritical case). For long pipes, the

tensioning term is small,3 so that subcritical bifurcation is more likely to occur for low levels of pressurization. Thus,

high pressurization in short pipes makes supercritical bifurcation more probable, while increasing the length of the pipe

enhances the probability of subcritical bifurcation.

Case 2: z2=go1. Assuming that r2n �Ao0 in this low velocity case (which is of real physical importance) the sign-

dominant term is

jþ ðG�A�Pþ gÞc, (65)

where j and c are the following expressions:

j ¼ � c1
2

3
g

� �10=3

J�2=3
2

3

z3

g

� �� �2

J
2

3

z3

g

� �� �2

� c2
2

3
g

� �8=3

J�2=3
2

3

z3

g

� �� �4

� c3
2

3
g

� �7=3

J�2=3
2

3

z3

g

� �� �3

J2=3
2

3

z3

g

� �
,

c ¼ J�2=3
2

3

z3

g

� �� �4
2

3
g

� �7=3

þ
2

3
g

� �2
21=3

ðGð2
3
ÞÞ
2

" #
1

Gð1
3
Þ
þ

1

Gð2
3
Þ

 !
, ð66Þ

and where c1, c2 and c3 are constants (given in Appendix C). Clearly c40 and it is easy to notice that the sign of jo0

does not depend on signs of J�2=3ðð2=3Þz
3=gÞ and J2=3ðð2=3Þz

3=gÞ, since the term containing these two Bessel functions is

much smaller then the other two terms. Hence, the following conditions are obtained for bifurcation types:

Supercritical condition:

Gþ g4AþPþ
jjj
c

, (67)

Subcritical condition:

Gþ goAþPþ
jjj
c

. (68)

Compared to conditions (61) and (62), inequalities pertaining to the low velocity case have an additional term acting in

the same manner as the pressure and axial flexibility. The term jjj=c approximately proportional to g so it

counterbalances the gravity term on the left side of inequalities and the above inequalities may be further replaced with

expressions

TðLÞ4EAþ PðLÞ,

and

TðLÞoEAþ PðLÞ,

for subcritical and supercritical cases, respectively. Since tension is inversely proportional to the length of the pipe, for

long pipes subcritical condition is practically always satisfied. For short pipes, supercritical bifurcation is possible only

if the pressurization term is small compared to axial flexibility, since the corresponding condition may be written as

EA
1

2L

Z L

0

w0
2
dx� 1

� �
4PðLÞ. (69)

In the above expression a viscoelastic material has been considered, and since we are considering a time independent

model, axial tension is

T ¼ sA ¼ ðE�þ E�_�ÞA ¼ �EA.
3Internal dissipation of the pipe material is assumed to be of the Kelvin–Voigt type.
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where averaged axial strain � due to lateral deflections w is

� ¼
1

2L

Z L

0

w0
2
dx.

The other possibility for this low velocity case, r2n �Ao0, has no physical meaning since n is small.

Although a subtle interplay between system parameters requires careful analysis under specific circumstances of

interest, in general it may be concluded that in the case of high fluid velocity a supercritical bifurcation is more likely in

a short pipe, while a subcritical bifurcation is more probable in a long pipe (provided that appropriate inequalities (61)

and (62) are fulfilled). In the case of low fluid velocities (along with r2n4A) the situation is the opposite: a supercritical

bifurcation is more likely in a long pipe, while subcritical bifurcation is preferred in short pipes provided condition (69)

is satisfied.
5. Conclusion

Exact analytical solutions in the vicinity of the bifurcation point for each model are obtained, along with the

derivation of conditions that classify bifurcations as supercritical or subcritical. Moreover, the analysis is performed in

such a manner that the influence of important quantities on the dynamics of supported fluid-conveying pipes may be

analyzed in the light of increasing complexity of each model.

Two important features of the stationary bifurcations for the supported fluid-conveying pipes should be emphasized.

First, all bifurcations are of the pitchfork type as a consequence of reflection symmetry. Second, all perturbations of the

pitchfork bifurcation, due to gravity or curvature effects for example, preserve the topological form of the unperturbed

bifurcating diagram, due to the fact that 0 remains the solution of the perturbed equation. Consequently, unfolding of

the bifurcation does not take place which requires that 0 is not the solution of the perturbed equation.

Models that consider both axial and lateral deflections, hence two-equation models, enable the possibility of both

supercritical and subcritical pitchfork bifurcations. In contrast, the single equation model of Holmes which considers

just transverse deflections allows only supercritical bifurcations. An important general characteristic of the classification

of generic codimension-1 bifurcations into supercritical or subcritical is that the bifurcation type depends on only two

factors: nonlinear terms and boundary conditions. Hence, nonlinear terms figuring in the equation for axial deflections

make an important contribution to the terms defining the normal form of the bifurcation equation.

In the complete nonlinear model of Paı̈doussis, the critical velocity values at which bifurcation occurs depend on

tension, gravity and pressure. For g40, gravity and tensioning exert matching effects reflected in shifting bifurcation

values in the positive direction, with the shift due to gravity being one-half the corresponding tensioning shift. The

effects of pressurization oppose effects of gravity and tension. For go0, gravity and pressurization act in the same

direction, while tensioning exerts an opposing effect. The critical velocity values for each model are presented in

Table 1. A summary of conditions classifying bifurcations as supercritical and subcritical is presented in Tables 2 and 3.

An increase of complexity of the bifurcation type conditions may be traced, starting with the least complex model of

Thurman and Mote and ending with the complete nonlinear model of Paı̈doussis. The velocity-dependent term

appearing in inequalities corresponding to the Thurman and Mote model with curvature transforms into an analogous
Table 1

Critical velocity values for the models of Holmes, Thurman and Mote (TM), Thurman and Mote with curvature (TM-k2) and the

complete nonlinear model of Paı̈doussis

Model Critical velocity rn

gX0 go0

Holmes
npþ

1

4

g
np
þ
1

2

G
np

np�
1

4

g
np
þ

1

2

G
np

TM and TM-k2 ðg ¼ 0Þ
npþ

1

2

G
np

—

TM-K ðg ¼ 0Þ
npþ

1

2

G
ðnpÞ
þ

1

2

K

ðnpÞ3
—

Complete nonlinear model
npþ

1

4

g
np
þ
1

2

G
np
�
1

2

P
np

np�
1

4

g
np
þ

1

2

G
np
�

1

2

P
np
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Table 2

Conditions for development of supercritical an subcritical bifurcations in the high velocity limit

Model High velocity limit

Supercritical condition Subcritical condition

TM GoA G4A

TM-k2 GoAþ 10
3
ðnpÞ2 G4Aþ 10

3
ðnpÞ2

Complete nonlinear model Gþ goAþP Gþ g4AþP

Table 3

Conditions for development of supercritical and subcritical bifurcations in different models of fluid conveying pipes. Term jjj=c,
proportional to g, is defined in Eq. (66)

Model Low velocity limit

Supercritical condition Subcritical condition

TM GoA� 1
2
ðnpÞ2 G4A� 1

2
ðnpÞ2

TM-k2 GoAþ 7
4
ðnpÞ2 G4Aþ 7

4
ðnpÞ2

Complete nonlinear model Gþ g4AþPþ jjjc Gþ goAþPþ jjjc
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pressurizing effect in the most complex model. Setting g ¼ P ¼ 0, and assuming that G and P are independent of the

pipe length in the complete nonlinear model of Paı̈doussis, one obtains classification conditions for the Thurman and

Mote model. Although conditions for determining whether the bifurcation is of supercritical or subcritical type involve

a delicate interaction among system parameters (gravity effects, tensioning, pressurization and axial flexibility), it may

be concluded that a general tendency is that for high fluid velocities supercritical bifurcation is more likely in short

pipes, while a subcritical one is more likely in longer pipes (provided that appropriate unequalities (61) and (62) are

satisfied). When the fluid velocity is low, but still high enough that its square exceeds axial flexibility, a supercritical

bifurcation is more likely in longer pipes (with conditions (67) and (68) in effect), while a subcritical bifurcation may

occur in short pipes provided that condition (69) is satisfied.
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Appendix A. Lyapunov–Schmidt reduction

Reduction of a nonlinear equation or a system of nonlinear equations

Fiðy;LÞ ¼ 0; i ¼ 1; . . . ; n (A.1)

to the single algebraic equation gðx; lÞ is the essential feature of the Lyapunov–Schmidt procedure. The vector y ¼

yðy1; . . . ; ynÞ is the unknown in the above equation, while L is a vector of the parameters. We assume that only one

parameter l is of concern. The main starting assumption is

Fið0; 0Þ ¼ 0, (A.2)

and of interest is to describe the solutions of this system locally, in the vicinity of the origin. If the rank of the n� n

Jacobian matrix L ¼ ðdFÞ0;0, is equal to n (nondegenerate case), the implicit function theorem guarantees the existence

of solution y as a function of l. If the rank is not equal to the size of the Jacobian matrix, we assume the minimally
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degenerate case, i.e.

rankL ¼ n� 1.

Assuming that F : Rn � Rk ! Rn is a smooth mapping, vector space complements M and N are chosen to kerL and

rangeL, respectively, so that

Rn ¼ kerL�M,

and

Rn ¼ N � rangeL,

where N denotes the null space of L. Introducing the projection operator E : Rn ! rangeL, the starting system of

equation is expanded into

EFðy; lÞ ¼ 0,

ðI � EÞFðy; lÞ ¼ 0, (A.3)

where I � E is the complementary projection operator to E. Solving the first equation of (A.3) which fulfills the

conditions of the implicit function theorem for n� 1 of the y variables, and inserting solutions in the second equation,

yields an equation for the remaining one variable. Because of the splitting of Rn, any vector y 2 Rn may be written as

y ¼ vð2 ker LÞ þ wð2MÞ, so that mapping

F : ðkerLÞ �M � Rk ! range L,

is given by expression

F ðv;w; lÞ ¼ EFðvþ w; lÞ.

The linear map

L : M ! range L

is invertible, thus according to the implicit function theorem it may be solved for w near the origin. Denoting this

solution as w ¼W ðv; lÞ : kerL� Rk !M, which satisfies

EFðvþW ðv; lÞ; lÞ ¼ 0; W ð0; 0Þ ¼ 0,

and it may be substituted into the second equation of (A.3) to obtain the reduced mapping f : kerL� Rk ! N, where

fðv; lÞ ¼ ðI � EÞFðvþW ðv; lÞ; lÞ.

Consequently, the zeros of the fðv; lÞ are in one-to-one correspondence with the zeros of Fðy; lÞ, or explicitly

fðv; lÞ ¼ 0 if and only if FðvþW ðv; lÞ; lÞ ¼ 0.

The reduced function fðv; lÞ may further be used to obtain the algebraic equation

gðx; lÞ ¼ hv�0;fðxv0; lÞi,

where v�0 2 ðrangeLÞ?, and h:; :i represents the standard inner product. Illustration of the reduction procedure is shown

in Fig. A1. Finally, the derivatives of g figuring in the Taylor expansion of gðx; lÞ around the origin, after computation

in terms of the original mapping Fðy; lÞ, are given below:

gx ¼ 0,

gxx ¼ hv
�
0; d

2Fðv0; v0Þi,

gxxx ¼ hv
�
0; d

3Fðv0; v0; v0Þ � 3 d2Fðv0;L�1E d2Fðv0; v0ÞÞi,

gl ¼ hv
�
0;Fli,

glx ¼ hv
�
0; dFl � v0 � d2Fðv0;L�1EFli.
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Φ(y,λ) :    n →     n

Φ(xvo+W(x,λ),λ) ∈N

n = M ⊕ ker L
n = range L ⊕ N

M

Mx

ker L

v0
xv0→

v0*
→

→

φ : ker L → N

range L

N

Φ(Mx)

Fig. A1. A geometrical interpretation of the Lyapunov–Schmidt reduction.
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Appendix B. Gravity effects in the model of Holmes

Solution of Eq. (11),

t2w00 þ tw0 þ ðt2 � ð1
3
Þ
2
Þw ¼ 0, (B.1)

may be expressed as

wðtÞ ¼ c1J1=3ðtÞ þ c2J�1=3ðtÞ

so that solution of Eq. (11) may be written as

uðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ gx

p
g1=3

c1J1=3
2

3

ða2 þ gxÞ3=2

g

 !
þ c2J�1=3

2

3

ða2 þ gxÞ3=2

g

 !" #
. (B.2)

Bessel functions possess the following well known properties, cf. Gradshteyn and Ryzhik (1994):

d

dx

Jnð _xÞ

xn

� �
¼ �

Jnþ1ðxÞ

xn ,

d

dx
ðxnJnðxÞÞ ¼ xnJn�1ðxÞ, (B.3)

so thatZ
x�nþ1JnðxÞdx ¼ �x�nþ1Jn�1ðxÞ,

Z
xnþ1JnðxÞdx ¼ xnþ1Jn�1ðxÞ. (B.4)

Furthermore, the boundary conditions of Eq. (11)

u0jx¼0 ¼ 0

u0jx¼1 ¼ 0,

yield

c1J�2=3
2

3

a3

g

� �
� c2J2=3

2

3

a3

g

� �
¼ 0,
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c1J�2=3
2

3

ða2 þ gÞ3=2

g

 !
þ c2J2=3

2

3

ða2 þ gÞ3=2

g

 !
¼ 0. (B.5)

The condition for obtaining nontrivial solutions c1; c2a0 requires

J2=3
2

3

a3

g

� �
J�2=3

2

3

ða2 þ gÞ3=2

g

 !
þ J2=3

2

3

ða2 þ gÞ3=2

g

 !
J�2=3

2

3

a3

g

� �
¼ 0. (B.6)

Assuming weak gravitational influence ðg ’ 0Þ, the arguments of the Bessel functions in the above equation are large so

that asymptotic expressions for Bessel functions may be used

JnðxÞ ¼

ffiffiffiffiffiffi
2

px

r
cos x�

p
2
n�

p
4

� 
þ Wðx�3=2Þ,

J�nðxÞ ¼

ffiffiffiffiffiffi
2

px

r
cos xþ

p
2
n�

p
4

� 
þ Wðx�3=2Þ.

Hence,

J2=3ðxÞ ¼

ffiffiffiffiffiffi
2

px

r
cos x�

17p
12

� �
,

J�2=3ðxÞ ¼

ffiffiffiffiffiffi
2

px

r
cos xþ

17p
12

� �
. (B.7)

In a straightforward manner, condition (B.6) yields

2

3

ða2 þ gÞ3=2 � a3

g
¼ np. (B.8)

Recalling that a2 þ g ¼ r2, the above condition is equivalent to

r3 � ðr2 � gÞ3=2 ¼
3

2
npg,

which, assuming g5r may be Taylor expanded, and retaining terms to second order yields

rk ¼ npþ
g

4kp
þ Wðg2Þ.

Keeping in mind the substitutions introduced in order to cast the equation in an analytically solvable form, the solution

we seek is

vðxÞ ¼
Z x

0

uðxÞdx; with uð0Þ ¼ 0. (B.9)

Inserting Eq. (70) in (B.3) the following expression is obtained:

vðxÞ ¼
c1

g1=3
3g
2

� �2=3 Z x

0

Z2=3J1=3ðZÞdZþ
c2

g1=3
3g
2

� �2=3 Z x

0

Z2=3J�1=3ðZÞdZ, (B.10)

so that

vðxÞ ¼ ~c1 ða2 þ gxÞJ�2=3
2

3

ða2 þ gxÞ3=2

g

 !
� a2J�2=3

2

3

a3

g

� �" #

þ ~c2 ða2 þ gxÞJ2=3
2

3

ða2 þ gxÞ3=2

g

 !
� a2J2=3

2

3

a3

g

� �" #
. ðB:11Þ
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Constants in the above two expressions satisfy the following relations:

c2

c1
¼

J�2=3
2

3

a3

g

� �

J2=3
2

3

a3

g

� � ¼ ~c2
~c1
. (B.12)

Finally, the complete solution vðxÞ may be written as

vðxÞ ¼ mðrÞða2 þ gxÞ J2=3
2

3

a3

g

� �
J�2=3

2

3

ða2 þ gxÞ3=2

g

 !
� J�2=3

2

3

a3

g

� �
J2=3

2

3

ða2 þ gxÞ3=2

g

 !
þ Wðx2Þ

" #
; (B.13)

for g � 0, this acquires the asymptotic form

uðxÞ ’
1

ða2 þ gxÞ2
sin

2

3

ða2 þ gxÞ3=2 � a3

g

" #
, (B.14)

while

lim
g!0

uðxiÞ ¼ sinðnpxÞ, (B.15)

as expected.
Appendix C. Normal form of the bifurcation equation for the complete nonlinear model

The normal form of the pitchfork bifurcation modulo higher order terms (h.o.t), reads

gðm; rÞ ¼ gmmmm
3 þ gmrmrþ h.o.t.

As shown in the main part of the paper, explicit determination of the term gmr is not necessary since only its sign is

relevant, and it was demonstrated that it is negative. The remaining term, gmmm, requires explicit determination in order

not only to evaluate its sign which enables classification of the bifurcation into supercritical or subcritical type, but also

to extract conditions, in the form of inequalities, that need to be fulfilled in order for each bifurcation type to arise. In

Appendix A, it was shown that this term requires evaluation of the inner product which may be written as

gxxx ¼ hv
�
0jd

3Fðv0; v0; v0Þi � hv�0j3 d
2Fðv0;L�1E d2Fðv0; v0Þi. (C.1)

Noting that the adjoint operator L� of

L ¼
w00000 þ ½ðr

2 � ðG�PÞÞ � gð1� xÞ�w000 þ gw00
u000

 !
,

is equal to L, the following expression is obtained for the first inner product in (C.1):

hv�0jd
3Fðv0; v0; v0Þi ¼ 9a0

Z 1

0

v00
2
v000v0 dxþ 9g

Z 1

0

ð1� xÞv00
2
v000v0 dx

� 3g
Z 1

0

v00
3
v0 dxþ 12

Z 1

0

v000
3
v0 dxþ 12

Z 1

0

v00
2
v00000 v0 dxþ 48

Z 1

0

v0v00v000v0000 dx
� �

,

where

a0 ¼ G�A�P,

and where v0 represents the solution of L ¼ 0 evaluated using procedure presented in Appendix B. With z given by

expression (48) v0 has the following form:

v0 ¼
w0ðxÞ

u0ðxÞ

 !
¼

1

0

� �
ðz2 þ gxÞ J2=3

2

3

z3

g

�
J�2=3

2

3

ðz2 þ gxÞ3=2

g

!
� J�2=3

2

3

z3

g

�
J2=3

2

3

ðz2 þ gxÞ3=2

g

!" #
. (C.2)
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Once the inverse operator L�1E d2Fðv0; v0Þ is evaluated following a lengthy procedure, the second inner product

requires evaluation of the following integrals:

hv�0j3 d
2Fðv0;L�1E d2Fðv0; v0Þi ¼ ða0 þ gÞ

Z 1

0

ðZ0Z00Þv0v000 dx�
Z 1

0

xZ0v0v000 dx

�

Z 1

0

xZ00v0v00 dx� 3

Z 1

0

Z000v0v000 � 4

Z 1

0

Z00v0v0000 dxdx

� 2

Z 1

0

Z0v0v00000 dx�
Z 1

0

Z0000v00 dx� g
Z 1

0

Z0v0v00 dx, ðC:3Þ

where

Z0 ¼
2ða0 þ gÞ
r2 �A

Z
v00v000 dx�

2g
r2 �A

Z
xv00v000 dx�

2

r2 �A

Z
ðv00v00000 þ v000v0000 Þdx�

g
r2 �A

Z
v00

2
dx. (C.4)

Evaluation of the integrals was performed using approximate expressions (B.7). Results were checked using lower

and upper bounds for the Bessel functions, given by the following inequality (Neuman, 2004):

1

Gðaþ 1Þ

x

2

� a
cos

xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðaþ 1

p
 !

pJap
1

Gðaþ 1Þ

x

2

� a 1

3ðaþ 1Þ
2aþ 1þ ðaþ 2Þ cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2aþ 2

r
x

 !" #
. (C.5)

After lengthy calculations the following expression is obtained:

gmmm ¼ � LðzÞ
ðG�A�Pþ gÞ

r2n �A

2

3

z3

g

� �
þ DðzÞ

1

r2n �A

2

3g

� �1=3

zþ OðzÞ

" #
, (C.6)

where

LðzÞ ¼ a
2

3
g

� �2

J�2=3
2

3

z3

g

� �� �3

J2=3
2

3

z3

g

� �
þ b

2

3
g

� �8=3

J�2=3
2

3

z3

g

� �� �4
" #

; (C.7)

a and b are positive constants

a ¼
1

ðGð2
3
ÞÞ
2

1

Gð1
3
Þ
þ

1

Gð2
3
Þ

 !2

b ¼ a
1

Gð13Þ
þ

1

Gð23Þ

 !�1
.

Furthermore, term DðzÞ is

DðzÞ ¼ d1
2

3

� �1=3

g5=3 J�2=3
2

3

z3

g

� �� �3

J2=3
2

3

z3

g

� �
þ

2

3
g

� �10=3

J�2=3
2

3

z3

g

� �� �4
21=3

ðGð2
3
ÞÞ
2

4

39

� �
, (C.8)

where

d1 ¼
1

Gð2
3
Þ

1

Gð1
3
Þ
þ

1

Gð2
3
Þ

 !
3

Gð1
3
Þ
þ

4

Gð2
3
Þ

 !
.

Finally, term OðzÞ is equal to

�ðjþ ðG�A�Pþ gÞcÞ,
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where

j ¼ � c1
2

3
g

� �10=3

J�2=3
2

3

z3

g

� �� �2

J
2

3

z3

g

� �� �2

� c2
2

3
g

� �8=3

J�2=3
2

3

z3

g

� �� �4

� c3
2

3
g

� �7=3

J�2=3
2

3

z3

g

� �� �3

J2=3
2

3

z3

g

� �
,

c ¼ J�2=3
2

3

z3

g

� �� �4
2

3
g

� �7=3

þ
2

3
g

� �2
21=3

ðGð2
3
ÞÞ
2

" #
1

Gð1
3
Þ
þ

1

Gð2
3
Þ

 !
;

c1; c2 and c3 are the following constants:

c1 ¼ 12
21=3

Gð4
3
ÞGð1

3
Þ

1

Gð1
3
Þ
þ

1

Gð2
3
Þ

 !
,

c2 ¼
1

Gð2
3
Þ

1

Gð1
3
Þ
�

1

Gð2
3
Þ

 !2

,

c3 ¼
21=3

Gð2
3
Þ

1

Gð4
3
Þ
�

1

Gð1
3
Þ

 !
.
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